
Alan Cooper
and the Goal Directed
Design Process
By Hugh Dubberly

Originally published in Gain
AIGA Journal of Design for the Network Economy
Volume 1, Number 2, 2001

Dubberly Design Offi ce
2501 Harrison Street, #7
San Francisco, CA 94110

415 648 9799

2

Alan Cooper is not your typical graphic designer—he’s
an engineer and a card-carrying member of the AIGA.
He inhabits both worlds and has something important to
say to designers and other engineers.

Cooper is not one to say things softly. He’s outgoing, quick
to offer an opinion or an aphorism, and seems to like nothing
better than a healthy debate. His favorite topic: what’s wrong
with the software that increasingly fi lls our lives.

Cooper has been designing software since the arrival of
personal computers more than 25 years ago. There are few
people who have thought as long and deeply about what
good software design is and about how to produce it. Much
of that thinking both comes from and infuses his work at
Cooper Interaction Design, the 70-person fi rm he founded
and runs in Palo Alto, California.

Cooper is surprisingly generous, even zealous, about sharing
what he has learned. He lays out his beliefs in two books:
About Face: The Essentials of User Interface Design [IDG
Books,1995] and The Inmates Are Running the Asylum: Why
High-Tech Products Drive Us Crazy and How to Restore the
Sanity [SAMS,1999]. In Inmates, Cooper provides a detailed
argument on the need for change. In sum, his argument is
this:

Computer chips are increasingly powerful, making computer
power less and less expensive. As a result computers are
being built into more and more products. And where there
are computers, there must also be software. And where there
is software, very often, there is user interaction. Already, it’s
diffi cult to fi nd new cars, appliances, or consumer electron-
ics that do not require users to interact with software.

So what’s the problem?

It is this: software does not reveal itself through external
form—something mechanical devices tend to do. And in
software, the cost of adding one more new feature is almost
nothing, whereas adding features to mechanical devices
almost always increases their cost. Cooper argues that
software is thus less constrained by negative feedback act-
ing to limit complexity than mechanical devices have been.
The result is pure Rube Goldberg: software with feature piled
upon feature. The trouble is that each incremental feature
makes a product more diffi cult to use. That leaves us with
products that are increasingly hard to use—and with growing
frustration as we try to use them.

In the traditional software development process, lots of
people inside a company—and many times customers as
well—ask for features. In many companies, the resulting list
of features often becomes the de facto product plan. Pro-
grammers make this approach worse by picking or negotiat-
ing their way through the list, often trading time for features.
In such a process, Cooper points out, it is diffi cult to know
when a product is complete.

The heart of the problem, he concludes, is that the people
responsible for developing software products don’t know
precisely what constitutes a good product. It follows that
they also do not know what processes lead to a good
product. In short, they are operating by trial and error, with
outcomes like customer satisfaction achieved by little more
than blind luck.

Cooper believes things don’t have to be so bad and points
to the fact that the industry is young and still learning how to
make software. He sees an analogy in the language of fi lm,
a process of telling interesting stories with movies that was
not inherent in the invention of the movie camera. After the
appearance of cameras and projection devices, the art and
craft of fi lmmaking also had to be invented. Cooper believes
we’re near a similar point of invention in the process of de-
veloping software. (The parallels between movie making and
software development are striking: computer visionary Ted
Nelson has gone so far as to suggest that software develop-
ment is a branch of movie making).

3

Cooper advocates fi ve signifi cant changes to the conven-
tional methods of software development in his goal-directed
design process:

1. Design fi rst; program second.

Old way: programming began as soon as possible—applying
design at the end if at all. Or, in more progressive environ-
ments, programming and design happened concurrently.

“The single most important process change we can make,”
Cooper says, “is to design our interactive products com-
pletely before any programming begins.”

See Diagram: Evolution of the Software Development
Process.

2. Separate responsibility for design
from responsibility for programming.

Old way: programmers made signifi cant decisions about how
users interact with the software—often while in the middle of
programming.

Allowing the same person to design and program creates
a confl ict of interest. Programmers want the product to be
easy to code while designers desire to make the product
easy to use.

3. Hold designers responsible
for product quality and user satisfaction.

Old way: management held programmers responsible for
product quality—since they’re the ones who made it.

This point has an important corollary: The fl ip side of taking
responsibility for product quality is receiving authority to
decide how the product behaves and what it looks like. That
means management has to be clear with programmers that
the design spec is not merely a suggestion but rather a plan
they must follow. Cooper says, “The design team must have
responsibility for everything that comes in contact with the
user. This includes all hardware as well as software. Col-
lateral software such as install programs and supporting
products must be considered, too.”

Cooper’s next point, the heart of his approach, is a new take
on an old idea: focus on the customer.

4. Defi ne one specifi c user for your product;
then invent a persona—give that user a name
and an environment and derive his or her goals.

Old way: managers and programmers talked about “the
end user” without being specifi c—allowing the term “user”
to stretch to fi t the situation.

A persona is a composite portrait of an idealized user: a
single sheet of paper with name, picture, job description,
goals, and often a quote. Cooper notes, “We print out copies
of the cast of characters and distribute it at every meeting. . .
Until the user is precisely defi ned, the programmer can
always imagine that he is the user.”

Goals derived from the persona are the focus of Cooper’s
entire process. (See Diagram: Evolution of the Software
Development Process).

User goals inform or direct all design decisions. “Personas
are the single most powerful design tool that we use. They
are the foundation for all subsequent goal-directed design.
Personas allow us to see the scope and nature of the design
problem . . . [They] are the bright light under which we do
surgery.”

Cooper’s approach differs from task-analysis-based ap-
proaches by focusing fi rst on goals to ensure that the right
tasks are identifi ed. “Goals are not the same thing as tasks.
A goal is an end condition, whereas a task is an intermediate
process needed to achieve the goal…. The goal is a steady
thing. The tasks are transient,” he says.

Finally, Cooper suggests a new way of organizing
the design team.

5. Work in teams of two:
designer and design communicator

Old ways: one programmer, or one interaction designer,
or one interaction designer and one visual designer.

Assign two people to all project teams: a designer to be re-
sponsible for the product concept and a design communica-
tor (very like a writer) to be responsible for the description of
the product. (See Diagram: Designer/Design Communicator).
This pairing resembles the art director and copywriter pair-
ing common in advertising, although Cooper is insistent in
pointing out that the role of the design communicator goes
beyond just writing and documentation.

Where do these changes lead?

Cooper maintains that goal-directed design will lead to soft-
ware products that are more powerful and more pleasurable
to use. He outlines fi ve major benefi ts:

 1) Improved product quality
 2) Reduced development time—which leads to
 reduced cost
 3) Improved documentation (Reducing the complexity
 of the software reduces the time spent explain-
 ing software problems and frees up time to explain
 how the software can really help users).

4

Cooper organizes projects around two-person teams.
One is a designer, the other, a design communicator. This
method contrasts with the common pairing of an interaction
designer and a visual designer—a method that may diminish
the visual designer’s role.

Rather, Cooper’s approach is a true team, as in ad agencies
where it’s not always clear which team member wrote the
headline or which came up with the concept. In the end,
shared work is both more fun and also higher quality.

Designer/Design Communicator
The Power of Two-person Teams

Designer - D

Agent Mulder

Composer (Rodgers)

Citizen (knower of truth)

Art director (Lee Clow)

Kite

at Cooper

on the X-files

with a musical

in a Platonic dialogue

in an ad agency

to fly – you need both

Design Communicator - DC

Agent Sculley

Lyricist (Hammerstein)

Socrates (gadfly, questioner)

Copy writer (Steve Hayden)

String

5

understand users

must bridge gap must bridge gap

D

draws

DC

writes

a description
of

form and behavior

responsible for
coherence of concept

emphasis on brainstorming
and ideation

prepares presentation

responsible for
coherence of narrative

emphasis on thoroughness
and completeness of ideas

owns documentation

a description
of

form and behavior

have an idea

(an approach
or concept)

understand and
articulate

solution in detail

D DC

6

Originally, programmers did it all:
In the early days of the PC software industry, smart

programmers dreamed up useful software, wrote it, and
even tested it on their own. As their businesses grew, the
businesses and the programs became more complicated.

Managers brought order:
Inevitably, professional managers were brought in. Good
product managers understand the market and competitors.
They defi ne software products by creating requirements
documents. Often, however, requirements are little more than
a list of features, and managers fi nd themselves having to
give up features in order to meet schedules.

Testing became a separate step:
As the industry has matured, testing has become a separate
discipline and a separate step in the process. Today, it’s
common to fi nd 1 tester for every 3 or 4 programmers. This
change illustrates that the programmer’s role is not fi xed but
still evolving.

Today, common practice is to code
and design simultaneously:
In the move from command-line to graphical user interface,
designers became involved in the process—though often
only at the end. Today, common practice is for simultaneous
coding and design followed by bug and user testing and
then revision.

Cooper insists that design
precede programming:
In Cooper’s goal-directed approach to software develop-
ment, all decisions proceed from a formal defi nition of the
user and his or her goals. Defi nition of the user and user
goals is the responsibility of the designer—thus design
precedes programming.

7

Evolution of the Software Development Process

Ship

CodeDesignInitiate Ship

Managers Designers Programmers QA

CodeInitiate Bug Test
Design User Test

Ship

Managers Programmers QA

Designers Usability Folks

CodeInitiate Test Ship

Managers Programmers QA

Bug Test
User Test

Usability Folks

Initiate Ship

Managers Programmers

Code/Test

Programmers

Code/Test

8

Cooper focuses on an area of design that traditional
designers do not often explore: the design of behavior.
Yet, all design affects behavior: Architecture is about how
people use spaces as much as it’s about form and light. And
what would be the point of a poster if no one acted on the
information it presented?

One way of making sense of the difference in focus between
Cooper’s work and more traditional design is through the
lens of history. In the fi rst half of the twentieth century,
designers focused primarily on form. Later, designers
became increasingly concerned with meaning, for example,
product designers and architects introduced vernacular and
retro forms in the 1970s; the trend continues today with
retro-styled automobiles such as the PT Cruiser.

Within the last fi ve years, a growing group of designers
have begun to talk about behavior—the experience users
have with a product. (Of course some designers such
as Aaron Marcus and John Rheinfrank, have focused on
behavior for a long time).

These concerns—form, meaning, and behavior—are not
exclusive. Great work combines them—as Maya Lin did, for
example, in the Vietnam Veterans Memorial which is at once
a carefully considered form, a series of layers of meaning,
and a profoundly moving experience.

Form, meaning, and behavior are not a closed set; already
we see hints of a fourth order of design (Richard Buchanan’s
phrase)—the design of possibility, opportunity, co-creation,
or collaborative systems. Again, it is not something new;
merely a new area of focus.

The Making of an Interaction Designer

Alan Cooper’s fascination with computers was fi rst triggered
by the fl ashing lights of an IBM System 360 that he saw
while visiting a Zurich bank in 1972. After that encounter, he
enrolled in data processing classes and learned to program.

But Cooper’s interest in design predates his interest in com-
puters. “One morning when I was 14,” he recalls, “I woke up
with a bolt of crystal clarity and knew that I wanted to be an
architect . . . I read every book in my high school library on
architecture.” Architecture, urban planning, and transporta-
tion design remain passions, and Cooper often describes
software design in terms of architecture and vice-versa, “The
architect translates the needs of the user into terms that
could be understood by the builder,” he says.

Cooper applied to study architecture at UC Berkeley’s Col-
lege of Environmental Design, but despite winning a full Re-
gent’s Scholarship, he never attended. Instead, after Cooper
saw a magazine ad for the Altair, an early personal computer,
he put off college in order to start a software company, just
as Microsoft founders Paul Allen and Bill Gates did. That was
in 1975, before there was a PC industry and before there was
a software industry.

Cooper borrowed $10,000 from his father (who took out a
second mortgage on the family house to provide the money)
and started a company with his high school friend, Keith
Parsons. Structured Systems Group (SSG) developed and
sold turn-key accounting systems, offering both a personal
computer and the software to run it at prices far below
comparable minicomputer-based systems of the day. They
soon realized that they didn’t need to sell the computers and
began to sell software independently, a new idea at the time.
SSG also began publishing Gordon Eubanks’ CBASIC, an
early programming language. In their book, Fire in the Valley:
The Making of the Personal Computer, Paul Freiberger and
Michael Swaine describe SSG as “one of the fi rst companies
to deliver business software for microcomputer . . .” and a
progenitor of the “general software company,” in its time on
a par with Microsoft and Digital Research.

SSG grew to 25 people but after four years Cooper left. He
formed a new company, Access Software. While at SSG
Cooper had been the chief programmer doing much of the
coding as well as designing the software. At Access, Coo-
per’s role was chief designer. “If the user came in contact
with it, I defi ned it.” Instead of doing the programming

Four Dimensions of Design

9

himself, he hired others to implement his vision of the inter-
face and left them free to organize the code as they thought
best. After two years with Access, Cooper joined his friend
Gordon Eubanks at Digital Research, taking a role focused
on design. He stayed little more than a year. Frustrated with
the development process and priorities at Digital Research,
Cooper left to work on his own doing what he calls “specula-
tive product development.”

Cooper worked on several projects including a visual
programming language. It enabled programmers to build
applications quickly and easily by clicking on fi le names and
dragging them into a structure. Cooper showed his program
to Bill Gates who proceeded to buy it, replace Cooper’s
programming language with BASIC (a new version of what
had been Microsoft’s fi rst product), and eventually publish
the hybrid as Visual Basic. Visual Basic was wildly success-
ful because it made easy what until then had been diffi cult.
Windows had previously required programmers to know C, a
demanding programming language. As Cooper explains, “Vi-
sual Basic let’s you code without learning 600 Windows SDK
[Software Developer Kit] calls.” Gates showed his gratitude
by bestowing Microsoft’s Windows

Pioneer Award on Cooper. Cooper notes that Gates also
gave him “a one-line resume: Father of Visual Basic.”

While doing his speculative development work, Cooper
toyed with the idea consulting. There were lots of opportuni-
ties to program, but he did not want to code other people’s
software designs. Instead, he wanted to design software
products, but he didn’t think anyone would pay him merely
for designing. Finally, in 1992, after speaking on an industry
panel, he took a gamble and announced that he was hence-
forth working as a software design consultant. Two people
on the panel offered him work.

In 1994, Cooper Interaction Design was busy enough to take
on two employees. Seven years later, it has 70 employees
with a range of backgrounds: technical writing, software proj-
ect management, tech support, graphic design, the humani-
ties, physics, architecture, computer science, and industrial
design. They occupy offi ces in two two-story buildings
located a block apart on the edge of the Stanford campus
and Stanford research park in Palo Alto—deep in the heart of
a Silicon Valley that desperately needs to put the user fi rst.

F
orm

B
eh

av
io

r

Meaning

Possibility

10

Who Provides What to Whom
in the Software Development Process

Senior
Management

provide

provide

provide

provide

provide

-

a product that will be
 profitable, delivered
 on time and budget

-

-

-

compensation
stable environment
vision of company
authority for product
goals
resources

-

time estimates
design plan
behavior specs
finished artwork

time estimates
engineering plan
engineering spec
finished code

time estimates
QA plan
tested code

compensation
stable environment
vision of company

vision of product
requirements doc
authority for visible
 product behavior
goals
resources
arbitration

-

tech opportunities
tech constraints
answers to questions
feedback
 (on behavior spec)

feedback
 (on behavior,
 though this is rare)

compensation
stable environment
vision of company

vision of product
requirements doc
authority for code
 (invisible behavior)
goals
resources
arbitration

behavior specs
finished artwork
answers to questions

-

bug list, definition,
 and prioritization

compensation
stable environment
vision of company

vision of product
requirements doc
authority for release
goals
resources
arbitration

behavior specs

engineering spec
feedback
 (on test plan)
candidate code
bug fixes

-

a company that
 can deliver products
vision of company

vision of product
a finished product

a product with a
 satisfying experience

a product that’s
 fast, efficient, and
 meets behavior
 specs

a product with a
 minimum of defects

receive

Top-down input

receive receive receive receive

Senior
Management

Product (Project)
Management

Software
Designers

Software
Programmers

Software
QA

Product (Project)
Management

Software
Designers

Software
Programmers

Software
QA

receive

End
user

provide payment
input
feedback

feedback on bugs input
feedback
 (on behavior)

- - -End
users

Bottom-up output

11

The Science of Goal-Directed Systems
By Paul Pangaro

Further study of goals might lead to software that adapts to
the goals of individual users, learning and responding as it’s
used. For help in this quest, designers can turn to a branch
of science that studies goal-directed activity.

A classic example of goal-directed activity is the steering
of a ship toward a destination. The captain aims directly
for a point on shore but is driven off-course by wind or tide.
Seeing the discrepancy, the captain makes a correction
based on the magnitude and direction of the error. Through
iteration of this loop—action, feedback, evaluation, re-
action—the holder of the goal does his best to reach the
goal.

In the 1940s the aptness of this example caused Norbert
Wiener and Arturo Rosenblueth to name a new discipline
after it: “cybernetics,” from the Greek kybernetes or

“steersmanship.” [Norbert Wiener, Cybernetics: or Control
and Communication in the Animal and the Machine. John
Wiley and Sons, 1948.]

Cybernetics begins with the observer’s identifi cation of a
“system” that uses feedback to modify actions in pursuit of
a goal, regardless of what materials comprise the system.
Though early discussions were often about mechanistic
systems, practitioners in cybernetics—who came from
psychology, anthropology, mathematics, biology, physics,
and sociology—immediately understood the power of the

“goal-directed” perspective for modeling human activities.

Of course, human beings themselves are “goal-directed
systems, and this recognition is an important step toward
improving the software design process. Everything that we
design should refl ect the terminology and dimensions of its
user, if that user is to clearly take action, absorb feedback,
and evaluate the discrepancy between a current and
desired state. Because these processes are clearly iterative,
cybernetics would also counsel designers to view the
end-user’s activity as essentially one of prototyping, that is,
iteratively converging on higher and higher fi delity versions of
some ideal, fi nal goal.

When interacting with human colleagues we must express
our goals in order to be understood and to collaborate.
Cybernetics suggests that we look at software in a similar
way—that we ask how software might hold representations
of our goals, help us refl ect on them, and even participate in
their development.

Cybernetics further suggests that interaction design may
come to embrace the end-user as a designer of goals, not
merely an achiever of them. As software better supports
users in achieving goals they have already formulated,
designers may fi nd ways to focus more explicitly on
helping the end-user who is not yet certain of an end-goal.
Interaction design might then bear surprising results—
when the end-user can express, evaluate, and modify
representations of his or her goals.

12

Cooper puts user goals at the center of the software design
process. That process is part of a series of offi ce practices
which depend on the talent and skills of designers and on
their application of principles and patterns throughout the
process.

This diagram shows the process proceeding in steps from
left to right. It leaves out feed-back loops and iteration which
are necessary for producing good work.

Goal Directed Design

PersonasObservationsInterviewsAudit

Design Office Practices Designer Talent and Skills

Scope

Initiate

Managers

business plan
marketing plan
branding strategy
market research
product plan
competitors
related technology

management
domain experts
customers
partners
sales channel
(This step leads to
a project mandate.)

use patterns

potential users
their activities
their environments
their interactions
their objects (tools)
(aeiou framework from
Rick Robinson, Sapient)

primary
secondary
supplemental
negative
served (indirectly)
partner
customer
organizational

desired outcomes
time constraints
financial constraints
general process
milestones
(Scope may be
loose or tight.)

The way the office is set up and run – the environment,
the spoken and unspoken rules – affect the work.
Cooper’s staff describes several key practices:
- goal-directed design process
- collaborative environment and common purpose
- D/DC team structure (see separate diagram)
- egoless design
- appropriateness of assignments
- commitment to education
- commitment to enhance process
- assessment and self-assessment

A designer’s native abilities and background also affect
the work. Cooper looks for people with these skills:
- analytic
- conceptual
- visual
- written
- communications

- empathic
- interpersonal
- brainstorming
- imagination

Review what exists
(e.g. documents)

Discuss values,
issues, expectations

Apply ethnographic
research techniques

Define typical
users

Define intent and
constraints of project

Activity:

Result:

Artifact: Summary
Insights

Tapes
Transcripts
Summary
Insights

Tapes
Transcripts
Summary
Insights

NotesProject Brief

Meetings: - Interviews Chalk talk
(early findings)

-Briefing

provide mandate to

insure financial successPrimary responsibility:

Users

lead to

Research and Analyze

provide input to

(focus in the first half, continuing throughout)

Opportunities, Constraints, and Context
Who will use the product?
What problem will it solve for them?

13

Goals Concept Scenarios Elements Framework Spec

Design Principles

CodeDesign Test Ship

life
end
experience

personal
practical
corporate
false

problem definition
vision definition
design imperatives
(May require changes
in scope.)

day-in-the-life
key-path
error
set-up

information objects
functional objects
control mechanisms

object relationships
conceptual groupings
patterns
logic / narrative flow
navigation structure

Principles guide the choices designers make as they
create. Principles apply at all levels of design from broad
concept to small detail. For example:
- Do no harm. (Hippocrates)
- Meet user goals.
- Create the simplest complete solution. (Ockham, Fuller)
- Create viable and feasible systems.

appearance
language
flow / behavior
product character
product story

Deduce what
users want

Throughout the goal-directed design process, designers apply other practices,
their talent and skills, as well as principles and patterns.

Software development process

Notes Formal Document
Problem Statement
Vision Statement

Notes
Storyboards

Lists
Sketches
Diagrams
High-level data models

Sketches
Flow Diagrams

Formal Document
Demonstration
Prototype

Chalk talk with
management

Presentation - - Chalk talk with
programmers

Presentation

Imagine a system to
help users reach goals

Tell stories about
using the system

Derive components
based on users

Organize the
components

Refine details;
describe models

provide spec to provide code to certify product for release Designers Programmers QA

insure customer satisfaction insure performance insure reliability

Users

drive*

* spark
 inform
 motivate
 filter
 organize
 prioritize
 inflect
 validate

provide bug reports to

Synthesize and Refine

provide feedback on usability to

(ongoing throughout, focus in the second half)

Design Patterns
Design patterns are recurring forms or structures which
designers may recognize or apply – during analysis and
especially during synthesis. Christopher Alexander,
“A Pattern Language,” provides examples of patterns for
architecture; Cooper collects patterns for software
interaction. For example, a common pattern is dividing a
window into two panes: the left smaller pane provides tools
or context and the right larger one provides a working
space or details.

The goal-directed design process takes place within a larger software development process.

Form, Meaning, and Behavior
What is it?
How will it behave for users?

14

Underlying Cooper’s approach to design is the premise that
products must balance business and engineering concerns
with user concerns.

He begins by asking, “What do people desire?” Then,
he asks, “Of the things people desire, what will sustain
a business?” And fi nally, he asks, “Of the things people
desire that will also sustain a business, what can we build?”
A common trap is to focus primarily on technology while
loosing sight of viability and desirability.

Understanding the importance of each dimension is only the
beginning. That understanding must be turned into action.
We’re most familiar with this process along the business
dimension: create a business model and then develop a
business plan. That process works for technology and users
as well. Cooper’s goal-directed design process is an analog
to the business planning process. It results in a solid user
model and a comprehensive user plan.

The user plan determines the probability that customers
will adopt a product. The business plan determines the
probability that the business can sustain itself up to and
through launch—and that sales will actually support
growth thereafter. And the technology plan determines
the probability that the product can be made to work and
actually delivered.

Multiplying these three factors determines the overall
probability that a product will be successful.

Larry Keeley proposed the original model (above) on which
this diagram (far right) builds. Keeley’s model described the
three primary qualities in a high-technology business.

Others have proposed measures of quality that have
three dimensions:
- Vitruvius: solidity, commodity, delight
- ISO 9241: effi ciency, effectiveness, satisfaction
- Cooper: hot, simple, deep
- and of course: fast, cheap, good

How to Build a Successful Product

C
apability

Viability

Product

D
es

ira
bi

lit
y

Cooper applies this model to three software giants
who have failed to find a balance:

Cooper relables the ‘teething rings’ people, business,
and technology. He places his first love, architecture,
at the center – along with software design.

Novell emphasized tech-
nology and gave little
attention to desirability.
This made it vulnerable
to competition.

Apple emphasized desir-
ability but has made
many business blunders.
Never-the-less, it is
sustained by the loyalty
its attention to users
creates.

Microsoft is one of the
best run businesses
ever, but it has not been
able to create highly
desirable products. This
provides an opening for
competitors.

Architecture
Design

EngineeringPolitics

Art

People Technology

Business

15

Objective:
a product that is

desirable and
viable and
buildable

1.) What do people
 desire?

User model

a) context
 - historical
 - social
 - economic

b) user
 - demographic
 - psychographic
 - technographic

c) values

d) goals

e) scenarios

User plan

a) design
 schedule

b) behavior
 spec

Technology
model

a) technology
 components

b) competitors

c) build vs buy
 buy vs open source

Technology
plan

a) engineering
 schedule

b) engineering
 spec

Probability of
customer adoption
(once the product
has launched)

The domain of goal-directed design

Overall probability
of product success

3.) What can
 we build?

Probability of
technical completion
(delivery)

2.) What will sustain
 a business?

Business model

a) funding model, b) income/expense projections, etc

Probability of
sustaining business
(up to launch and
long enough after
to build revenue)

x x =

Business plan

a) marketing plan, b) launch plan, c) distribution plan

