/_)&\i yay

O

by Hugh Dubberly.

- Alan Cooper is not your typical graphic designer—
s an engineer and a card-carrying member of
AIGA. He inhabits both worlds and has something
important to say to designers and other engineers.

. Cooper is not one to say things softly. He’s outgoing, quick to offer an opinion or an aphorism
and seems to like nothing better than a healthy debate. His favorite topic: what's wrong with
the software that increasingly fills our lives, _

Cooper has been designing software since the arrival of personal computers more than 25
years ago. There are few people who have thought as long and deeply about what good software
design is and about how to produce it. Much of that thinking comes from and infuses his work
at Cooper Interaction Design, the 70-person firm he founded and runs in Palo Alto, California.

Diagrams written and designed by Hugh Dubberly,
Special thanks to Robert Reimann, Kim Goodwin, Jonathan Korman, David Fore and Dave Cronin of Cooper Interaction Design.

-,

<

T o 2 Pt s

-
F———



O

Originally, programmers did it all:

In the early days of the PC software :ndus!ry.
.Smart programmers dreamed up useful -
software, wrote it and even tested it on I.heu-
own. As their businesses grew, the businesses
and the programs became more complicated,

{ ;
M= gers brought order:
!newtably. professional managers were brought
in. Good product managers understand the
market and competitors, They define software
products by creating requirements documents.
Often, however, requiremerits. are ittle more than
a list of feaiuras, and managers find ihemselves
having to give up fsatures in arder m mse

Testlxg became a separate step:
As the industry hias matured; testing has
beconfe a separate discipline and a separate

step in the pracesa Today, it's common to find T,
ne {e,sler for euery ‘three or fouir prugrammers

This change iEiustra:es that the programmem Y

Initiaste ——————— 5 code ——> Test —— ship |8

b o b e mar, P A v

.]. o

foday, common practice is to
:ode and design simultaneously:
n the move from command line to graphical
1ser interface, designers became involved i
he pracess—though often only at the end.”
"oday Sommon rac!ice is for simultaneous:
so déé‘pn'? y dis

Prcgrnrnmura s aa
Cade Ly BUQ Test
Des:gn t—;________,User Test

Usability Folks

Initiate —-——~——-—> —> Ship .

sooper |s\s that design
wecede programmmg ; L E
1G4 s goal- directed approach lc: o
cﬂ\_'/g elopment, -all decisions pracee
om a formal definition of the usérand his o
«er goals, Definition of the user and user goai
3 the responsibility of the designer—thus desrgn
recedes programming,

F‘rugmnmers QA

- Managers

Usability Folks

:-r‘::l



@

“vup~s 49 suLpLsIgly generous, even zealous,
about sharing what he has learned. He lays out his
beliefs in two books: About Face: The Essentials of User
Interface Design (IDG Books, 1995) and The Inmates
Are Running the Asplum: Why High-Tech Products Drive
Us Crazy and How to Restore the Sanity (SAMS, 1999).
In Inmates, Cooper provides a detailed argument on
the need for change. In sum, his argument is this:

Computer chips are increasingly powerful,
making computer power less and less expensive, As a
result, computers are being built into more and more
products. Where there are computers, there must also
be software. And where there is software, very often,
there is user interaction. Already, it's difficult to find
new cars, appliances or consumer electronics that do
not require users to interact with software.

So what'’s the problem?

It is this: Software does not reveal itself through
external form—something mechanical devices tend.to
do. And in software, the cost of adding one more new
feature is almost nothing, whereas adding features to
mechanical devices almost always increases their cost.
Cooper argues that software is thus lessconstrained
by negative feedback acting to limit complexity than
mechanical devices have been. The result is pure Rube
Goldberg: software with feature piled upon feature.
The trouble is that each incremental feature makes a
product more difficult to use. That leaves us with prod-
ucts that are increasingly hard to use—and with grow-
ing frustration as we try to use them.

In the traditional software development process,
many people inside a company—and oftentimes cus-
tomers as well—ask for features. In marny companies,
the resulting list of features often becomes the de facto
product plan. Programimers make this approach worse
by picking or negotiating their way through the list,
often trading time for features. In such a process,
Cooper points out, it is difficult to know when a prod-
uct is complete, _ :

The heart of the problem, he concludes, is that
the people responsible for developing software prod-
ucts don't know precisely what constitutes a good-
product. It follows that they also do not know what”
processes lead to a good product. In short, they
are operating by trial and error, with outcomes like
customer satisfaction achieved by little more than
blind luck, :

Cooper believes things don’t have to be so bad
and points to the fact that the industy is young and
still learning how to make software. He sees an analogy
in the language of film, a process of telling interesting
stories with movies that was not inherent in the inven-
tion of the movie camera. After the appearance
of cameras and projection devices, the art and craft of
filmmaking also had to be invented. Cooper believes
we're near a similar point of invention in the process of
developing software. (The parallels between moviemak-

ing and software development are striking; computer
visionary Ted Nelson has gone so far as to suggest that
software development is a branch of moviemaking.)

Cooper advocates five significant changes to the
conventional methods of software development in his
goal-directed design process:

1) Design first, program second
Old way: Programming began as soon as pos-

sible—applying design at the end ifat all. Or,
in more progressive environments, program-
ming and design took place concurrently.

“The single most important process change we
can make,” Cooper says, “is to design our interactive
products completely before any programming begins.”
(See diagram on opposite page.)

2) Separate responsibility for design .. _

from responsibility for programming
Old way: Programmers made significant
decision about how users would interact

with the software—ofien while in the middle
of development.

Allowing the same person to design and pro-
gram creates a conflict of interest. Programmers want
the product to be easy to code, while designers want
to make the product easy to use.

3) Hold designers responsible for prod-
uct quality and user satisfaction
Old way: Management held programmers
responsible for product quality, since they're
the ones who made it.

This point has an important corollary: The
flip side of taking responsibility for product quality is
receiving authority to decide how the product behaves
and what it looks like. That means management has
to be clear with programmers that the design spec is
not merely a suggestion but rather a plan they must -
follow. “The design team must have responsibility
for everything that comes in contact with the user,”
Cooper insists. “This includes all hardware as well as
software. Collateral software such as instal] programs

~ and supporting prodiicts must be considered, too.”

— Cooper’s next point—the heart of his approach—
is a new take on an old idea: focus on the customer.

4) Invent one specific user for your
. product—a persona. Give that uger
a name and an environment and

derive his or her goals

Old way: Managers and programmers talked
about “the end user” without being specific—
allowing the term “user” to stretch to fit the
situation,



A persona is a composite portrait of an idealized description of the product. (See diagram on opposite

user: a single sheet of paper with name, picture, job page.) This pairing resembles the art director and copy-
description, goals and, often, a quote. “We print out writer pairing common in advertising, although Cooper
copies of the cast of characters and distribute it at Is insistent in pointing out that the role of the design
- every meeting,” Cooper notes. “Until the user is pre- communicator goes beyond just writing and documen-
(_ ) cisely defined, the programmer can always imagine tation.
that he is the user.” Where do these changes lead?
Goals derived from the persona are the focus of Cooper maintains that goal-directed design will
Cooper’s entire process. (See diagram on pages 14-15) lead to software products that are more powerful and
' User goals inform or direct all design decisions. more pleasurable to use. He outlines five major benefits:
“Personas are the single most powerful design tool that )
we use,” he says. “They are the foundation for all sub- 1) Improved product quah_ty
sequent goal-directed design. Personas allow us to see 2) ReduCEd development time,
the scope and nature of the design problem. . . . [They] which leads to reduced cost
are the bright light under which we do surgery.” 3) Improved documentation
Cooper’s approach differs from task analysis— (Reducing the complexity of the software
based approaches by focusing first on goals to ensure reduces the time spent explaining software
" that the right tasks are iderltified. “Goals are not the problems and frees up time toexplain how
same thing as tasks. A goal is an end condition, where- the software can really help users.)
i as a task is an intermediate process needed to achieve 4) Reduced support calls and
the goal,” he explains. “The goal is a steady thing. The therefore reduced support costs
tasks are transient.” 5) Increased customer loyalty
Finally, Cooper suggests a new way of organizing
the design team: Cooper is an accomplished programmer, one
. ) with what musicians call “chops.” When he says that
i 5) Work In teams of two: designer the traditional software development process is funda-
and design communicator ) , mentally wrong, we should listen, and we should take
Old ways: one programimer, or one inieraction seriously his proposals for fixing the problem. Never a
designer, or one interaction designer and one shy man, he believes with an almost religious passion
- visual designer. in the need for fundamental and far-reaching reform.
) Assi ) | o1 24 desi “.It’s not about 1nterface'," he says. “It’s not abput expe-
¥ ssign two people to all project teams: a esigner to be rience. It’s about changing the way business is done in
‘ responsible for the produ.ct concept and a d.e51gn coml- the 21st century. It's about the social consequences,
municator (very like a writer) to be respon51bl¢ for the because more and more, everything is becoming soft-
: ware and technology—and it's too hard to use.” 7%
- = — zine ad for the Altair, an early personal computer, he put off cblleg-e
' R T ST = - inr-order-to-start-a-software-companyrjust-as Microsoft-founders Paul ™™
Alan Cooper's fascination with computers was first triggered by the Allen and Bill Gates did. That was in 1975, before there was a PC or
flashing lights of an IBM System 360 he saw as a teenager in a software industry.
bank in Zurich, Switzerland. After that encounter, hegnrolled in data Cooper borrowed $10,000 from his father (who took out a
processing classes and learned to program. i second mortgage on the family house to provide the money) and start- -
But Cooper’s interest in design predates his interest in ed a company with his high school friend, Keith Parsons. Structured
- computers. “One morning when | was 147 he recalls, "l woke up - ~Systems Group (SSG) developed and sold turnkey accounting sys-
with a balt of crystal clarity and knew that | wanted to be an archi- tems, offering both a personal computer and the software to run it at
tect | read every book in my high school library on architecture” prices far below comparable minicomputer-based systems of the day.
i - Architecture, urban planning and fransportation design The partners soon realized that they didn't need to sell the computers
remain passions, and Cooper often describes software design in and began to sell software independently—a new idea at the time.
terms of architecture and vice versa. “The architect translates the SSG also began publishing Gordon Eubanks' CBASIC, an early pro-
) . heeds of the user into terms that can be understood by the builder; gramming language. In their book, Fire in the Valley: The Making of the
~. -+ he says. : : Personal Computer, Paul Freiberger and Michael Swaine describe SSG-
Cooper applied to study architecture at UC Berkeley's as “one of the first companies to deliver business software for micro-
College of Environmental Design, but despite winning a full Regent's computers” and a progenitor of the *general software company; in its

Scholarship, he never attended. Instead, after Cooper saw a maga- time on a par with Microsoft and Digital Research,

i




aoper crgamzes pro;ects

Mxere it's not always clear
. 'which. team member wrote the' . 2.
 headline or which came up with-

H o the, concept Shared.worlcis
: : both mare fun and also of hlgh-}_
erqua]@ ol S5 : e 5 b R e e

; : ; b ; o 5 P I;mphasls on thotoughness

B bt

B . Responsible for . adeser Respunsnbla lor R
s *Tﬂnﬂuw,w«fmmhémnwmcept_ . i af

and completeness of 1d

_‘__Owns documenlaﬁori

Understands and
articulates .. -
- solution in detail -

- Understands users ngethsrthe two
: : =43 have an idea
{an approach

or concept)

must bridge gap

- : - : gramming language. As Cooper explains, “Visual Basic let's you

S5G grew to 25 people, but after four years Cooper leftto  —

form a new company called Access Software. While at SSG, Cooper
had been the chief programmer do-'mg much of the coding as well as
designing the software. At Access, Cooper’s role was chief designer.
*If the user came in contact with it, | defined it’ he remembers. Instead
of doing the programming himself, he hired others to implement his
vision of the interface and left them free to organize-the code as they
thought best. After two years with Access, Cooper joined his friend
Gordon Eubanks at Digital Research, taking a role focused on design.
He stayed little more than a );ea[.. Frustrated with the company's devel-
opment process and priorities, Cooper left to work on his own, doing
what he calls “speculative product development”

Cooper worked on several projects including a visual pro-
gramming language that enabled programmers to build applications
quickly and easily by clicking on file names and dragging them into a
structure. Cooper showed his program to Bill Gates, who proceeded
to buy it, replace Cooper's programming language with BASIC (a new
version of which had been Microsoft's first produci) and eventually
publish the hybrid as Visual Basic. The language was wildly success-
ful because it made easy what until then had been difficult. Windows
had previouél); required programmers to know C, a demanding pro-

Rl

code without learning 600 Windows SDK [Saftware Developer Kit]
calls" Gates showed his gratitude by bestowing Microsoft's Windows
Pioneer Award on Cooper. Cooper notes that Gates also gave him "a
one-line resume: Father of Visual Basic®

While doing his speculative development work, Cooper toyed—
with the idea of consulting. There were lots of opportunities to pro-
gram, but he did not want to code other people's software designs.
He wanted to design software, but didn't think anyone would pay him
merely for designing. Finally, in 1992, after speaking on an industry
panel, he took a gamble and announced that he was henceforth
working as a software design consultant. Two people on the panel
immediately offered him work.

In 1994, Cooper Interaction Design was busy enough to
take on two employees. Seven years later, it has 70 employees with
a range of backgrounds: technical writing, software projectmanage-
ment, technical support, graphic design, the humanities, physics,
architecture. computer science and industrial design. The company
occupies offices in two two-story buildings located a block apart on
the edge of the Stanford University campus and Stanford Research
Park in Palo Allo—deep in the heart of a Silicon Valley that desper-
ately needs to be convinced fo put the user first.



Cooper puts user goals at the center of the software design process.
That process Is part of a series of office practices that depend on the
,r“ nt and skills of designers and on their application of principles and
jerns throughout the process. This diagram shows the process pro-
ceeding in stgps from left to right It leaves out the feedback loops and
iterations that are necessary for producing good work.

F’rimary responsibility:

Users

Managers provide mandate to

- provide input to

ensure financial success

Define intent and

ill use the product? -

~*\Whit problem will it solve for them?

Define archetypal

Activity: Review what exists ~ Discuss values, Apply ethnographic
- constraints of project  (e.g. documents) issues, expectations  research techniques users
! : . . . lead t
Result Scope Audit Interviews Observations  Personas 3
Desired outcomes Business plan Management Use patterns Primary '
Time constraints Marketing plan Domain experts Secondary
Financial constraints ~ Branding strategy Customers Potential users Supplemental
General process Market research Partners Their activities Negative
Milestones Product plan Sales channel Their environments Served (indirectly)
{Scope may be Competitors (This step leads to Their interactions Partner
loose or tight.} Related technology  a project mandate.) Their objects (tools) Customer
(Rick Robinson's Organizational
y “aeiou"framework)
O
- Artifact: Project brief Summary Tapes Tapes Notes
Insights Transcripts Transcripts
Summary Summary
Insights Insights
Meetings: Briefing - Interviews Chalk talk -
- _ {early findings) -
! _ ) - B == Thr
! the
1 U
i ) ~

desurbcs seveml ke/ prac ICES:
~-goal-directed design proczass
—collaborative environment and

—Ccommon purpose
-D/DC team structure (see
diagram on page 13}
~egoless design
-appropnateness of assignments
—commitment ¢ 2ducztion
—commitment to enhance process
—-assessment and self-assessment

sakive
ground zlso aff.
loaks for posols with
—analytic
~conceptual
—visual

~-good writer
—communicative
—empathic
—mntgirpersonal
—able 1o bramsiorm
—raginaiive

'l‘ul.ur‘-a ancl




-

discuss feasibility with - -

Designers  provide specs to \Progrémmers p

ace;within a larger software

ensure customer satisfaction

. provide feedback on usability to

provic

o Sl:j"g"repo‘rtsv to

rovide code to N

‘Users

QA certify product for release

- .
ensure performance

7 ensure reliability

N2

| | I I
Deduce what Imagine a system to Tell stories about  Derive components
users want help users reach géals  using the system  ‘based on users
lead to drive* = : -
—> “zale —> Concept - Scenarios  Elements
Life Problem definition Day-in-the-life Information objects
End *spark  Vision definition Key-path Functional objects
experience inform  Design imperatives Error Control mechanisms
motivate  (May require changes  set-uS
Personal fiter in scope.)
Practical organize
priontize
Corporate inflect
False validate
Notes Farmal document Notes Lists
Problem statement Storyboards Sketches
Viston statement Diagrams

Chalk talk with
management

\\"

Presentation

High-level data models

Organize the .
components

Framework

Object relationships
Conceptual groupings
Patterns
Logic/narrative flow
Navigation structure

Sketches
Flow diagrams

Chalk talk with
programmers

- _..Refine details;

describe models

Spec
Appearance
Language
Flow/behavior
Product character
Product story

Formal document
Demonstration
Prototype

Presentation

Throughout the goal-directed design process, designers apply other practices, ..
their talent and skills, as well as principles and patterns.

Design Principles

Principles guicie the choices designers
makz as they create. Principles apply at all
—levels or design irdm broad concept (o -
smal deted For example:
-Dc no harm (Hippocratés)
~iMzet usar goals
— -Creaie the simplest complete solution
{Ockham. Fullar)
-Creale viable and feasible sysiems

'£1 itz stens mussal pozitaida o TEin i

Desigh Patterns

Design pattemns are recuiring forms.
structures or behaviors that dosigners man
racognize or appiv—during analysis anc

Lty dUnng Syiiicse. i 1o
nguage. Chrisiopher /
camplzs of patterns for arc
Coopor collects paitems for snftware
interaction. For example. & corman satlerr,
ig dividing a vandow inla lwo panes: the lef
narrowsr pang providas wois or coniest
and the nght wider one providas & warking
space or details.

ang

3o~
3

-




AT b Rl S BT e aa. =

I T P S I

{up to faunch and
long enough after
to build revenue)

{once the product
has launched)

*  User plan

:a) Design

. 5

schedule ’ P
User model ;
b) Behavior
i_ spec a} Context
. ~hjstorical
—social

_~economic

s b) Uger . Objective:
Tt dariographic” a product Ihat is

F : ~psychographic #s:rable.

Al =tachnographic viable and

= o buildable

c)Va!ues el

; d) Goals

e) Scenanos

2) What wiil sustain
a business?

-Business model .-

N

Businessplan =~ =i

{delivery)

ﬂ model

a) Funding model, b) Incurnelexpense projecnons, etc

a) Markellng plan, b) Launch plan, c) Dlstnbuhon plan R !

TR L T bgbﬁef’ﬁ'ﬁ 5% this model to three Software giants
that have failed to find a balance:

IR

Novell emphasized tech-
nology and gave little

" attention to desirability.
This made it vulnerable

. to cormpetition.

Ss.

Appla emphaslzad desu-
. ability but has made
many business blunders.
Nevertheless, it is
_sustained by the loyalty
its attention to users
creates. - -

Technolagy
plan
Microsoft is one of the ]
best run businesses

ever, but it has not been

able to create highly

- desirable products. This
provides an opening for

. competitors.

a) Engineering

Technology schedule
v b) Engineering
a) Technology spec 3
.3+ COMPONONIS. . iy srwiistimipwhing. as Gaii e

b} Competitors

¢) Build vs. buy e b ERECEL ey Ve T ..
buy vs. open source A ! K h sftne | pLlties b

Cooper relabels the 'teethlng nngs peopla, busmess
. and technology. He places his first love, architecture, -, )%
“at lhs center—along wu!h software desxgn T %

THE SCIENCE OF GOAL-DIRECTED SYSTEMS
by Paul Pangaro

The further study of goals might lead to software that adapts to the
aims of individual users, learning and responding as it's used. For help
in this quest, designers can turn to a branch of science that studies
goal-directed activity.

A classic example of goal-directed activity is steering a ship
toward a destination. The captain aims directly for a point on shore
but is driven off-course by wind or tide. Seeing the discrepancy, the
captain makes a correction based on the magnitude and direction of

the error. Through iteration of this loop—action, feedback, evaluation,
re-action—one does his or her best to reach a goal.

In the 1940s, the aptness of this example caused Norbert
Wiener and Arturo Rosenblueth to name a new discipline after it:
“cybernetics! from the Greek kybernetes or “steersmanship!
Cybernetics begins with the observer's identification of a system that
uses feedback to madify actions in pursuit of a goal, regardless of
what materials comprise the system. Though early discussions were
often about mechanistic systems, practitioners in cybernetics—who



'S USYIIS Uy asniiy, Yviial UL peEupIE aesirer” !nen
he asks, "Of the things people desire, which will sus{am a
bus:ness?’ Fmaliy he asks. 'Of the_thmgs peopla esir

oniy the begmmng That understand:ng m.ust be turnad !nto
actmn‘ We‘re most farmllar with-this process in the busmesr- '

; The user plan deianmnes the pfobab:!fty that customers
~ will adopt a product The busi jess plan determinés the proba-
" bility that the business can sustain itself up to and through
~faunch--and that sales Wil actoatly SUppor growth thereatter——
-+ And the technology plan determings the probability-that the weem—.
product can be made to work and can actually be delivered.
: Muitipiyihg these three factors determines the overall

probability that a product will be successful.

ee y’s mcde! descnbed :
- the three primary qualities in a high-technology business." -
.. Others have pmposed measures of quality that have
three dimensions:
o =Vitruvius: solidity, commodity, de!:ght
- —1SO 9241: effi iciency, effectiveness, sahsfactron
' ""Cacper hot, simple, deep
_ —And, of course: fast, cheap, good e

came from psychology, anthropology, mathematics, biology, physics When interacting with human colleagues we must express our goals in ord:
e and sociology—immediately understood the power of the goal-directed to be understood and to collaborate. Cybernetics suggests that we look at softwar:
) perspective for modeling human activities. in a similar way—that we ask how software might hold representations of our goals-
Ot course, human beings themselves are goal-directed sys- help us reflect on them and even participate in their development. :
1 tems, and recognizing this is an important step toward improving the Cybernetics further suggests that interaction design may come to embrace
1 software design process. Everything that we design should reflect the end user as a designer of goals, not merely an achiever of them. As software be
the terminology and dimensions of its user, if that user is to clearly ter supports users in achieving goals they have already formulated, designers may fi
take action, absorb feedback and evaluate the discrepancy between vaays to focus more explicitly on helping the user who is not yet certain of an end ge
a current and a desired state. Because these processes are clearly Interaction design might then bear surprising results~when the end user can expres
E iterative, cybernetics would also counsal designers to view the end evaluate and medify representations of his or her goals.
oy user's activity as essentially one of prototyping, that is, iteratively con-
u verging on higher and higher fidelity versions of some ideal, final goal.




